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Driving Accuracy
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Zettabytes

58

Zettabytes

Big Data Growth
90% of the World’s Data in last 2 Years

EXPLODING DATA AND MODEL SIZE

Growth In Scientific Data
Fueled by Accurate Sensors & Simulations

287 TB/day 

ECMWF

393 TB 

COVID-19 Graph Analytics

16 TB/sec 

SKA

550 TB 

NASA Mars Landing Sim.

Source for Big Data Growth chart: IDC – The Digitization of the World  (May, 2020)
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NVIDIA A100 40GB
The World’s Highest Performing AI 
Supercomputing GPU

40GB HBM2e
For large datasets 

and models

1.5 TB/s +
World’s highest memory bandwidth 

to feed the world’s fastest GPU

Multi-Instance GPU

3rd Gen NVLink

3rd Gen Tensor Core
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UNIFIED AI ACCELERATION

All results are measured
BERT Large Training (FP32 & FP16) measures Pre-Training phase, uses PyTorch including (2/3) Phase1 with Seq Len 128 and (1/3) Phase 2 with Seq Len 512,

V100 is DGX1 Server with 8xV100, A100 is DGX A100 Server with 8xA100, A100 uses TF32 Tensor Core for FP32 training
BERT Large Inference uses TRT 7.1 for T4/V100, with INT8/FP16 at batch size 256. Pre-production TRT for A100, uses batch size 94 and INT8 with sparsity
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(7 MIG)

BERT-LARGE TRAINING 
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All results are measured
Except BerkeleyGW, V100 used is single V100 SXM2. A100 used is single A100 SXM4
More apps detail: AMBER based on PME-Cellulose, GROMACS with STMV (h-bond), 
LAMMPS with Atomic Fluid LJ-2.5, NAMD with v3.0a1 STMV_NVE
Chroma with szscl21_24_128, FUN3D with dpw, RTM with Isotropic Radius 4 1024^3, 
SPECFEM3D with Cartesian four material model
BerkeleyGW based on Chi Sum and uses 8xV100 in DGX-1, vs 8xA100 in DGX A100

1.6X 1.5X

1.9X

1.5X

2.1X
2.0X

1.7X

1.9X
1.8X

0.0x

0.5x

1.0x

1.5x

2.0x

AMBER GROMACS LAMMPS NAMD Chroma BerkeleyGW FUN3D RTM SPECFEM3D

A100

S
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d
u
p

V100

Molecular Dynamics Physics Engineering Geoscience

ACCELERATING HPC WITH UP TO 2X PERF OVER V100
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NVIDIA A100: SPECS

V100 A100

SMs 80 108

Tensor Core Precision FP16 FP64, TF32, BF16, FP16, I8, I4, B1

Maximum Shared Memory
per Block

96 kB 160 kB

Unified L1/SMEM per SM 128 kB 192 kB

L2 Cache Size 6144 kB 40960 kB

Memory Bandwidth 900 GB/sec 1555 GB/sec

NVLink Interconnect 300 GB/sec 600 GB/sec

FP64 Throughput 7.8 TFLOPS 9.7 (FMA) | 19.5 TFLOPS (MMA)

FP32 Throughput 15.7 TFLOPS 19.5 TFLOPS

TF32 Tensor Core Throughput N/A 156 (Dense) | 312 TFLOPS (Sparse)
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A100 BLOCK DIAGRAM

2x BW

54 billion transistors in 7nm

Multi-Instance GPUH
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GigaThread Engine with MIG Control

L2 Cache L2 Cache

NVLink NVLink NVLink NVLink NVLinkNVLink NVLink NVLink NVLink NVLinkNVLink NVLink

40MB L2

6.7x capacity

108 SMs

6912 CUDA Cores

1.56 TB/s HBM2

1.7x bandwidth

7x  
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A100 SM

Third-generation Tensor Core
Faster and more efficient

Comprehensive data types 

Sparsity acceleration

Asynchronous data movement 

and synchronization

Increased L1/SMEM capacity

3rd Gen. 

TENSOR 

CORE

3rd Gen. 

TENSOR 

CORE

3rd Gen. 

TENSOR 

CORE

3rd Gen. 

TENSOR 

CORE

192 KB L1 Data Cache / Shared Memory
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NEW TF32 TENSOR CORES

➢ Range of FP32 and Precision of FP16

➢ Input in FP32 and Accumulation in FP32

➢ No Code Change Speed-up for Training

FP32

TENSOR FLOAT 32 (TF32)

FP16

BFLOAT16

8 BITS 23 BITS

8 BITS 10 BITS

5 BITS 10 BITS

8 BITS 7 BITS

Range PrecisionSign

TF32 Range

TF32 Precision
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MATRIX MULTIPLY THROUGHPUT WITH CUBLAS
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STRUCTURAL SPARSITY BRINGS ADDITIONAL SPEEDUPS

➢ Structured sparsity: Half the values are 
zero

➢ Skip half of the compute and mem fetches

➢ Compute up to 2x rate vs non-sparse

1x

1.5x

A100 A100
Sparsity

BERT Large Inference

Sparse 

Matrix
Dense 

Matrix
A100 Tensor 

Core

2X
Faster Execution

BERT Large Inference | precision = INT8 with and without sparsity | Batch sizes - no sparsity: bs256, with sparsity: bs49, A100 with 7 MIGS
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A100 STRONG SCALING INNOVATIONS

Math

RF

SMEM/L1

L2

DRAM

NVLINK

SM

GPU memory system

Multi-GPU systems

Improve speeds & feeds 

and efficiency across all 

levels of compute and 

memory hierarchy



13

A100 TENSOR CORE
2x throughput vs. V100, >2x efficiency

16x16x16 matrix multiply FFMA V100 TC A100 TC

A100 vs. 
V100

(improvement)

A100 vs. 
FFMA

(improvement)

Thread sharing 1 8 32 4x 32x

Hardware instructions 128 16 2 8x 64x

Register reads+writes (warp) 512 80 28 2.9x 18x

Cycles 256 32 16 2x 16x
Tensor Cores assume FP16 inputs with FP32 accumulator, V100 Tensor Core instruction uses 4 hardware instructions

Math

RF

SMEM/L1

L2

DRAM

NVLINK

32 Threads (Warp)

R
e
g

is
te

rs

FFMA
(32 MACs, 2 cycles)

32-Thread

Operand 

Sharing

A100 TC (1 

cycle)

A100 TC Instruction
(2048 MACs, 8 cycles)

16x16

16x8

16x8

8-Thread

V100 TC Instruction
(1024 MACs, 8 cycles)

8-Thread 8-Thread 8-Thread

8x8

8x4

4
x
8
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Tensor Cores

V100

Load-Shared
(4x)

A100

SMEM

Load-Shared
(2x)

A100 SM DATA MOVEMENT EFFICIENCY

Tensor Cores

3x SMEM/L1 bandwidth, 2x in-flight capacity
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RF RF

Store-Shared

L2

DRAM

Load-Global

L2

DRAM

Load-Global-
Store-Shared
(Async-Copy)

RF

L1

SMEM

RF

L1

SMEM

Reserved for in-
flight dataReserved for in-

flight data

5 reads 
1 write 2 reads 
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A100 L2 BANDWIDTH

Math

RF

SMEM/L1

L2

DRAM

NVLINK

64

128

128

128

128

256

V100

80 SMs

V100 TC

64 L2 slices

32 B/clk/slice

16 B/clk/SM 

63%

24 B/clk/SM 

94%

12 B/clk/SM 

47%

Output
Activations

Tile: work 

for 1 SM

Parallelize 

across GPU

32 B/clk/SM 

169%

48 B/clk/SM 

253%

24 B/clk/SM 

127%

V100++

(hypothetical)
108 SMs

A100 TC

64 L2 slices

32 B/clk/slice

32 B/clk/SM 

68%

48 B/clk/SM 

101%

24 B/clk/SM 

51%

A100

108 SMs

A100 TC

80 L2 slices

64 B/clk/slice

Split L2 with 

hierarchical crossbar –

2.3x increase in 

bandwidth over V100, 

lower latency
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A100 DRAM BANDWIDTH

Faster HBM2

25% more pins, 38% faster clocks

→ 1.6 TB/s, 1.7x vs. V100

Math

RF

SMEM/L1

L2

DRAM

NVLINK

kernel

buffer A

kernel

buffer B

kernel

buffer A

kernel

buffer B

kernel

buffer C

kernel

buffer D

kernel

buffer E

kernel

…Keep data resident in L2 to 

reduce DRAM bandwidth

Larger and smarter L2
40MB L2, 6.7x vs. V100

L2 residency controls
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A100 NVLINK BANDWIDTH

Math

RF

SMEM/L1

L2

DRAM

NVLINK

Third Generation NVLink
50 Gbit/sec per signal pair

12 links, 25 GB/s in/out, 600 GB/s total

2x vs. V100

NVLink NVLink NVLink NVLink NVLinkNVLink NVLink NVLink NVLink NVLinkNVLink NVLink
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A100 ACCELERATES CUDA GRAPHS

With strong scaling CPU and grid 
launch overheads become 
increasingly important 

(Amdahl’s law)

Grid launches: 

• CPU-to-GPU

• GPU grid-to-grid

…

One-shot CPU-to-GPU 

graph submission and 

graph reuse

Microarchitecture 

improvements for grid-

to-grid latencies

32-node graphs of empty grids, DGX1-V, DGX-A100 
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A100 STRONG SCALING INNOVATIONS

2.9x Effective RF BW with A100 Tensor Core
2.8x Effective RF capacity with Async-Copy bypassing 
RF
3.0x Effective SMEM BW with A100 Tensor Core and Async-Copy

2.3x SMEM capacity

2.3x L2 BW

6.7x L2 capacity, +Residency Control

1.7x DRAM BW

1.3x DRAM capacity

2.0x NVLINK BW

2.5x Tensor Core math BW (FP16)Math

RF

SMEM/L1

L2

DRAM

NVLINK

A100 improvements over V100

Delivering unprecedented levels of performance
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MULTI-INSTANCE GPU (MIG)
Optimize GPU Utilization, Expand Access to More Users with Guaranteed Quality of Service

Up To 7 GPU Instances In a Single A100: 
Dedicated SM, Memory, L2 cache, Bandwidth for 
hardware QoS & isolation

Simultaneous Workload Execution With 
Guaranteed Quality Of Service:
All MIG instances run in parallel with predictable 
throughput & latency

Right Sized GPU Allocation: 
Different sized MIG instances based on target 
workloads

Diverse Deployment Environments: 
Supported with Bare metal, Docker, Kubernetes, 
Virtualized Env.

MIG User Guide: https://docs.nvidia.com/datacenter/tesla/mig-user-guide/index.html

https://docs.nvidia.com/datacenter/tesla/mig-user-guide/index.html
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LOGICAL VS. PHYSICAL PARTITIONING

GPU MULTI-PROCESS SERVICE

A B C

Multi-Process Service
Dynamic contention for GPU resources

Single tenant

CUDA MULTI-PROCESS SERVICE CONTROL

PyTorch PyTorchTensorFlow TensorFlow Jarvis + TensorRT TensorRT

Multi-Instance GPU
Hierarchy of instances with guaranteed resource allocation

Multiple tenants
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CUDA CONCURRENCY MECHANISMS

Streams MPS MIG

Partition Type Single process Logical Physical

Max Partitions Unlimited 48 7

SM Performance Isolation No
Yes (by percentage, not 

partitioning)
Yes

Memory Protection No Yes Yes

Memory Bandwidth QoS No No Yes

Error Isolation No No Yes

Cross-Partition Interop Always IPC Limited IPC

Reconfigure Dynamic Process launch When idle
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TensorFlow on 8xGA100 at 20khz

GPU METRICS SAMPLING IN NSIGHT SYSTEMS
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TensorFlow on 8xGA100 at 20khz

GPU METRICS SAMPLING IN NSIGHT SYSTEMS

Hardware metrics collected at runtime to answer

▪ Is my GPU full? Sufficient grid size & streams? 

▪ Is my instruction rate low (possibly I/O bound)? 

▪ Am I using tensor cores?

▪ Can I see GPU Direct RDMA|Storage or other transfers?

System-wide GPU observation 

10khz default can be increased depending on GPU

SM utilization metrics

SMs active

Instructions

Tensor cores

Warp occupancy

I/O throughput metrics

PCIe

NVLink

DRAM




